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ABSTRACT

A new model of analytical function has been developed for modern
Business Intelligence Analysis (BIA). The Croatian model is being used for
intelligence investigations of various financial events, markets, subjects or
entities, and for financial BIA control methods. The financial BIA function-
al entropy was predicted utilizing the soft computing process (based on
fuzzy logic) and various stochastic simulations. This study explains the sim-
ulation-modeling concept of the BIA function. The queuing M/M/s model
with priorities was used for solving different stochastic simulations. In
practice, the BIA simulation model can be used for measuring analytical
capacity.

1. Introduction

Even in the initial stages of establishing a mathematical model,
the analytical approach is often too categorical and inflexible to
cope with the intricacy and the complexity of real world financial
systems such as that in Croatia. In dealing with such complex sys-
tems, we face a lot of uncertainty and  imprecision. It is therefore
necessary to attempt to exploit the human ability to make ration-
al decisions in an uncertain and imprecise environment, and also
to use soft computing tolerance for imprecision and uncertainty, in
order to achieve an acceptable low cost model. Soft computing is
oriented towards fuzzy logic analysis, artificial neural networks,
and probability reasoning, including genetic algorithms, chaos
theory, and machine expertise. Fuzzy logic addresses imprecision
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and approximate reasoning. 
Optimal decision-making is often inadequate in achieving the

best design for a queuing system and developing information on
the behavior of a queuing system such as the analytical informa-
tion queuing system of the Business Intelligence Analysis (BIA). The
BIA system (with data warehousing) is an aid to technology, which
provides governmental and financial organizations with end-to-
end solutions for managing, organizing, and exploiting financial
and other data throughout the enterprise. This technology pro-
vides tools to collect information (concerned financial business) in
a single organized data repository based on a common set of
financial and other business definitions. After explication of the
soft computing of the entropy of the modern financial analytical
function (based on fuzzy logic), the second part of this work pro-
vides a short explanation of the results of analysis and simulation
of  modern financial analytical function based on stochastic mod-
eling.

2. Computing the Entropy of the Modern Financial Analytical
Function

2.1 The Soft Computing Based on Fuzzy Decision Logic

First let us examine several basic concepts and notations. If U
denotes the universal analytical set, then set U contains all the
possible analytical elements in each particular analytical context
or analytical application from which a set can be formed. The
process by which individuals from the universal set U are deter-
mined to be either members or non-members of a set can be
defined by a characteristic function. For a given set A where A ⊆
U, this characteristic function assigns a value µA(x) to every x ∈ U
such that µA(x) = 1 if  x ∈A or µA(x) = 0 if  x ∉ A .

This function can be generalized such that the values assigned
to the elements of the universal set fall within a specified range
and indicate the membership grade of these elements in the set in
question. Consequently, larger values denote higher degrees of
set membership. Such a function is called a membership function
and the set defined by it is a fuzzy set. Here are two different kinds
of notations. For example, if U = {x1, x2, x3, x4, x5}, and A =
{x3, x4, x5}, then a membership function for the elements of the
set A can be dually denoted:  A = {x1\0, x2\0, x3\1, x4\1, x5\1},
or  µA(x1) = 0 ;  µA(x2) = 0 ;  µA(x3) = 1 ;  µA(x4) = 1 ;  µA(x5)
= 1 .

Logically, then, a membership function in fuzzy logic can be
represented in a similar but slightly different manner.  For exam-84



ple, if U = {x1, x2, x3, x4, x5}, and the two fuzzy sets are: A =
{x1\0; x2\0;  x3\0.5; x4\0.7; x5\0.9}, or B = {x1\0.9; x2\0.7;
x3\0.5; x4\0; x5\0}, then a membership function for the elements
of the fuzzy set A and B are denoted thus, for a fuzzy set A: µA(x1)
= 0 ; µA(x2) = 0 ; µA(x3) = 0.5 ; µA(x4) = 0.7 ; µA(x5) = 0.9,
a fuzzy set B: µB(x1) = 0.9; µB(x2) = 0.7; µB(x3) = 0.5; µB(x4)
= 0; µB(x5) = 0.

A fuzzy decision is a special type of fuzzy set. The decision in
a fuzzy environment (depending on the context) can be viewed as
the intersection of fuzzy constraints and fuzzy objective function(s),
where the fuzzy objective function is characterized by its member-
ship function, and represents constraints. In contrast to a no fuzzy
environment, the decision in a fuzzy environment is defined as the
optimal selection of activities that simultaneously satisfy fuzzy
objective function and fuzzy constraints. On this basis, the
assumption is that the constraints are not interactive, are logical,
and correspond to the intersection. By analogy to crisp (not fuzzy)
environments and to crisp decision logic, in fuzzy environments we
have slightly different decision logic (usually called “fuzzy decision
logic”). A linguistic variable x is a variable whose values are words
or sentences in natural or artificial language. For example, if intel-
ligence is interpreted as a linguistic variable, then its term set T(X),
as the set of its linguistic values, where each of the terms in T(intel-
ligence) is a fuzzy subset of a universe of discourse, say U =
[xmin,  xmax], or because of practical reasons usually U = [0,
xmax] ⊂ R. There are two rules associated with a linguistic vari-
able: syntactic rule (which defines the well-formed sentences in
T(X) and semantic rule (by which the meaning of the terms in T(X)
may be determined). 

Fuzzification of the classical and modern BIA evaluation system

Modern BIA “data contents and information source evaluation
system” (the so-called «4x4x2» evaluation system,) is an important
concept in the BIA model. It can be viewed as a conceptual tool
for reducing the entropy of the modern financial analytical func-
tion. The classic or OLD “data contents and information source
evaluation system” has one simple criterion, which deals with
three linguistic variables for data contents and information source
evaluation purposes (low information, unknown=entropy, high
information). Modern BIA or NEW “data contents and information
source evaluation system” («4x4x2» evaluation system) has a high-
ly developed criterion, which deals with a minimum of 32 linguis-
tic variables for data contents and information source evaluation
purposes.
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Table 1. Simplified Modern BIA “Data Contents and Information
Source Evaluation System”

For simplicity’s sake, we can say that the modern BIA or NEW
“data contents and information source evaluation system” deals
(in the worst case) with only five linguistic variables for data con-
tents and information source evaluation purposes (say, vvery llow
iinformation, llow iinformation, uunknown = eentropy, hhigh iinforma-
tion, vvery hhigh iinformation). Suppose that simplification has been
made, and that modern BIA “data contents and information
source evaluation system” («4x4x2») has a criterion system, and
that its term set TNEW(intelligence), as the set of its linguistic val-
ues, is:
TNEW (intelligence) = vli vli (vvery llowiinformation) +                 

li li ( llow/iinformation) +                   
u u (uunknown/entropy) +
hi hi (hhighiinformation) +                      
vhi vhi (vveryhhigh iinformation).

Classical BIA “data contents and information source evalua-
tion system” has a simple criterion system, which deals with only
three linguistic variables for data contents and information source
evaluation purposes, and where its term set TOLD(intelligence), as
the set of its linguistic values, is:
TOLD(intelligence) =  li li ( llow iinformation) +

u u (uunknown/entropy) + 
hi hi (hhighiinformation.

Table 2. Classical “Data Contents and Information Source
Evaluation System”
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Intelligence Intelligence 
Evaluation SystemEvaluation System TransformationTransformation of  Theof  The LinguisticLinguistic VariablesVariables System System 

Real «4x4x2» X4, X2, B4, C3 C2, B3 B2, B1,
Evaluation System X3, C4 X1, A4 C1, A3, A2, A1

Simplified «New» «vli» «li» «u» «hi» «vhi»
Evaluation System vli = 0.1 li = 0.3 u = 0.5 hi = 0.7 vhi = 0.9  

Intelligence EvaulationIntelligence Evaulation Transformation of The LinguisticTransformation of The Linguistic
SystemSystem Variables SystemVariables System

Real Clasical Weak (Low) Entropy Strong (High)
Evaluation System Information Information

Simplified “Old” “li” “u” “hi”
Evaluation System li = 0.3 u = 0.5 hi = 0.7



Simplified, analytical information (“financial rumours”, etc.) is
composed of at least two or more elementary parts. Let us sup-
pose that it is composed of only two elementary parts mI(x) and
mII(x), or Analyticalinformation = [µI(x), µII(x)]. For the modern or
NEW BIA fuzzy decisions system, it is clear that we have 16 (from
25 possible) compound linguistic variables, with a value greater
then 0.5 and which represent real “analytical information”. The
maximal analytical success (“good fuzzy decision”) of the modern
or NEW BIA “data contents and information source evaluation
system” (in the worst case) is 64% (or 16/25), and it is much ger-
ater than the maximal analytical success of the classic or OLD BIA
evaluation system (which is, in the best case, 55.56%, or 5/9).
Also, in the BIA source analytical information set X is true (1) or
false (0), with probability A and (not A). These relations are:
p(X=1) = A , p(X=0) = 1 - A = A. During the analytical trans-
formation process, compound analytical information set Y can
have these destination probabilities: B, B , C i C, which are rep-
resented in the relation: p(Y=1/X=1) = B, p(Y=0/X=1) = 1 - B
= B, p(Y=1/X=0) = C,  p(Y=0/X=0) = 1 - C = C. The analyt-
ically interesting transformation process is represented (from the
given and taken set of analytical information) with the equation for
analytical information contents I(X; Y): I(X; Y) =sum (i=1, n) sum
(j=1, m) p (xi, yj) ld (p(xi/yj) )/(p[xi] ), where destination set prob-
abilities are:  p(Y=1) = AB+AC, p(Y=0) = AB+AC. All com-
pound probabilities are:  p(X=1, Y=1) = AB,    p(X=0, Y=1) =
(1 - A) C, p(X=1, Y=0) = AB, p(X=0, Y=0) = (1 - A)C,
p(X=1/Y=1) = AB/( AB+AC), p(X=0/ Y=1) = ((1 - A)
C)/(AB+AC), p(X=1/Y=0) = AB/(AB+AC), p(X=0/ Y=0) = ((1
- A)C)/( AB+AC) .

Input for the OLD and NEW BIA system is true (1) or false (0)
analytical information’s set X, with the same probabilities A = A,
where:  A = p(X=1) = 0.5 ; A = p(X=0) = 1 - A = 0.5. The
maximal analytical success of the NEW BIA system (in the worst
case) is 64%, but for the OLD BIA evaluation, the system maximal
success is 55.56%. When B = C and C = B , then input probabil-
ities for the OLD BIA systems are:

B = p(Y=1/X=1) = 0.5556; C = 1 - C = p(Y=0/X=0) =
0.5556; C = p(Y=1/X=0) = 0.444; B = 1 - B = p(Y=0/X=1) =
0.4444; and for NEW BIA system are:  B = p(Y=1/X=1) = 64%
= 0.64; C = 1 - C = p(Y=0/X=0) = 0.64 ; C = p(Y=1/X=0)
= 0.36 ; B = 1 - B = p(Y=0/X=1) =  0.36 . 

From the equation for I(X; Y): IOLD(X; Y) = 0.008924 bit,
INEW(X; Y) = 0.057317 bit, IOLD(X; Y) < INEW(X; Y) for 542.28 bit
for only 100 analytic cycles. Then the analytical entropy H(Y) is:
I(X;Y) = H(Y) - H(Y/X), H(Y) = I(X;Y) + H(Y/X),  where H(Y/X) is
“analytical noise”. 87



Consequently, the analytically interesting transformation
process is represented (from the given and taken set of analytical
information) with the equation for analytical information contents
I(X; Y) = HT (or analytical transformation). Without comparing the
degree of analytical noise, it is clear that in the NEW BIA evalua-
tion system analytically transformed relevant information H(Y) is
only 100 analytic cycles 542.28 bit better then OLD BIA system. 

STOCHASTIC SIMULATION OF THE MODERN 
FINANCIAL ANALYTICAL FUNCTION

Introduction

We are using here the specific M/M/s model, which assumes that
all inter-arrival times are independently and identically distributed
according to an exponential distribution (our input process is
Poisson); that all analytical service times are independently and
identically distributed according to another exponential distribu-
tion (our analytical service process is Poisson); and that the num-
ber of servers is s (any positive integer); however, in the Croatian
BIA practice and related analytical function they vary from mini-
mum 1 to maximum 7. With the equal distribution of analytical
supply time, with an expected analytical service time of about 1/µ
(µn is the mean analytical service rate for the overall system, or
expected number of clients (data or information) completing ana-
lytical service per unit time, and with exponentially distributed
inter-arrival time of analytical information at the expected average
rate of 1/λ (λn is mean arrival rate, or expected number of arrivals
per unit time), this represents the most simplified type of
Markovian analytical system with an assumed  infinite analytical
capacity (Y = ∞), and with priorities in queue discipline (or with-
out supposed FIFO queue discipline). We are currently research-
ing analytical BIA cases in which there are no possibilities for ana-
lytical closeness of a multi-channel model of analytical supply
function, or when the utilization factor for the analytical service
facility is ρs < 1 ⇔ λ < sµ (because ρs = λ/sµ). 

In the multi-channel model M/M/s we have a priority sub-sys-
tem with N (where N = 1, 2, ... , k) and relative priority classes
where Wk is steady-state or has a total expected waiting time in
the analytical system (including service time, or analytical supply
time). The steady state expected number of members of priority
class k in the queuing system (including those being analytically
served) is Lk, and it can be explained in this relation: Lk = λk Wk,
for k = 1, 2, ... , N . The expected waiting time in the queue
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(excluding service time) for priority class k is Wq(k), and can be
explained in this relation: Wq(k) = Wk – 1 / µ . The corresponding
expected queue length («tail length») is Lq(k), and it can be
explained: Lq(k)= λk Wq(k).

Computer-Based Simulation Modeling Process With Stochastic
Simulations

We researched behaviour of developed M/M/s model types in
relation to the various intensities of analytical traffic (see Table 3). 

Table 3. Exploitation levels (rs) of various analytical system
(M/M/s) types

ρρss = = λλ / (s/ (s ⋅µ⋅µ) ) µµ=4 =4 µµ=5 =5 µµ=6=6
λ = 4 and s = 1 - 0.800 0.667  
λ = 3 and s = 1 0.750 0.600 0.500  
λ = 2 and s = 1 0.500 0.400 0.333  
λ = 4 and s = 2 0.500 0.400 0.333  
λ = 3 and s = 2 0.375 0.300 0.250  
λ = 4 and s = 3 0.333 0.267 0.222  
λ = 2 and s = 2 0.250 0.200 0.167  
λ = 3 and s = 3 0.250 0.200 0.167  
λ = 4 and s = 4 0.250 0.200 0.167  
λ = 4 and s = 5 0.200 0.160 0.133  
λ = 3 and s = 4 0.188 0.150 0.125  
λ = 2 and s = 3 0.167 0.133 0.111  
λ = 4 and s = 6 0.167 0.133 0.111  
λ = 3 and s = 5 0.150 0.120 0.100  
λ = 4 and s = 7 0.143 0.114 0.095  
λ = 2 and s = 4 0.125 0.100 0.083  
λ = 3 and s = 6 0.125 0.100 0.083  
λ = 3 and s = 7 0.107 0.086 0.071  
λ = 2 and s = 5 0.100 0.080 0.067  
λ = 2 and s = 6 0.083 0.067 0.056  
λ = 2 and s = 7 0.071 0.057 0.048  

We changed exploitation variables of the analytical system (ρs
= λ / s µ), in all combinations for the values: λ = {2, 3, 4}, µ =
{4, 5, 6}, and for models: M/M/1, M/M/2, M/M/3, M/M/4,
M/M/5, M/M/6 and M/M/7 (the number of analytical servers
varies from 1 to 7, or s = {1, 2, 3, 4, 5, 6, 7}). We have com-
pleted 62 simulation-modelling experiments with different types of
M/M/s multi-channel analytical models. Simulation modelling
results were successful(see Table 1). We researched the possibility
of rational dimensioning and organization of analytical function,89



without remaining in a stationary state, of the developed analyti-
cal model as well.  Now we will be comparing the potential dif-
ference between both BIA M/M/s models (NEW and OLD) by sto-
chastic simulations, (first) in a similar experimental situation, and
(second) in a minimally different experimental situation. In both
situations, we selected the M/M/5 simulation model for NEW and
the M/M/3 simulation model for OLD. For both simulation mod-
els, we used the same intensity of analytical traffic. Or concretely,
λk = 4, and µ = 5 for both simulation experiments (see Table 1).
Also, in both situations the numbers of non pre-emptive classes
are minimally different. Consequently, for the NEW simulation
model we used only (N =) 3 different non pre-emptive classes,
and for the OLD simulation model we used only (N =) 2 different
non pre-emptive classes. The mean exponential distribution of the
expected analytical service time (or mean analytical service rate
for the overall BIA system, µn) was the same 
(1/µn = 0.2) for both experimental situations. In the first case, we
used almost the same experimental situation for both simulation
models (NEW and OLD). We have λk = 4, µ = 5, with 
λkNEW = λ1 + λ2 + λ3 = 1.4 + 1.3 + 1.3 = 4 for NEW simu-
lation model (N = 3), and λkOLD = λ1 + λ2 = 2 + 2 = 4 for
OLD simulation model (N = 2). Results from simulation-model-
ling experiments were successful.  Due to the problem of stochas-
tic convergence, we made nine different series of stochastic simu-
lations after the simulation modelling experiemnts with: 100000,
50000, 10000, 5000, 1000, 500, 100, 50, and 10 arrivals of
analytical data (or information).

The variables tell us that for the first non pre-emptive priority
class we have a significantly lower time (Wq(1) is lower for
91.94%) for the NEW model than for the OLD model, and that
we have  a significantly lower number (Lq(1) is lower for 87.10%)
for the NEW model than for the OLD model. In the second case,
we used a somewhat different experimental situation for both sim-
ulation models (NEW and OLD). We have λk = 4, µ = 5, with
λkNEW = λ1 + λ2 + λ3 = 2 + 1 + 1 = 4 for the NEW simula-
tion model (N = 3), and λkOLD = λ1 + λ2 = 3 + 1 = 4 for the
OLD simulation model (N = 2). Results from simulation-model-
ling experiments were successful. The variables tell us that for the
first non pre-emptive priority class we have a significantly lower
time (Wq(1) is lower for 92.39%) for the NEW model than for the
OLD model, and that we have a significantly lower number (Lq(1)
is lower for 88.52%) for the NEW model than for the OLD model.
The NEW model is definitely superior.

Figure 1. Graphic Example of Usage (when ρ = 0,3 and s = 3)90



From Table 3 and Figure 1, we can easily find from the specific
exploitation level (for example it is 30%, or ρ = 0,3), and the spe-
cific number of analytical servers (for example s = 3) the maxi-
mum intensity of analytical traffic (for this example, it ranges from
4/5 to 4/4, or λ/µ = [4/5, 4/4]). Or in the opposite direction,
we can find the specific exploitation level (it can be from 20% up
to 25%) from the specified maximum intensity of analytical traffic
(say it is in the interval λ/µ = [4/5, 4/4]), and the specific num-
ber of analytical servers (say it is s = 4) 

CONCLUSION

In the NEW BIA evaluation system, the analytically transformed
relevant information H(Y) is only 100 analytic cycles 542.28 bit
better than in the OLD evaluation system. In the worst case (for the
NEW BIA system), the maximal analytical success of the NEW BIA
system is 64%, but for the OLD system, it is maximally 55.56%.
This conclusion and study provide a solid base for future BIA mod-
eling and simulation process. The benefits of this new analytical
model of BIA function consist in the simple method utilized for
measuring analytical capacity and capability of analysis
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